Lecture: Beneficial Nonlinear Design in Engineering: The X-Structure/Mechanism Approach

      Release Date:Jun 6, 2023      Click:次     Audit:郑水平

Abstract

Nonlinearity can take an important and critical role in engineering systems and thus cannot be simply ignored in structural design, dynamic response analysis, and parameter selection. A key issue is how to analyze and design potential nonlinearities introduced to or inherent in a system of under study, which is greatly demanded in many practical applications involving vibration control, energy harvesting, sensor systems and robots etc. This talk will present an up-to-date review on a cutting-edge method for manipulation and employment of nonlinearity in engineering systems developed in recent years, named as the X-structure or mechanism approach. The method is inspired from animal leg/limb skeletons and can provide passive low-cost high-efficiency adjustable and beneficial nonlinear stiffness (high static & ultra-low dynamic), nonlinear damping (dependent on resonant frequency and vibration excitation amplitude) and nonlinear inertia (low static & high dynamic) individually or simultaneously. The X-shaped structure or mechanism is a generic and considerably simple structure or mechanism representing a class of beneficial geometric nonlinearity with realizable and flexible linkage mechanism or structural design of different variants or forms (quadrilateral, diamond, polygon, K/Z/S/V-shape, or others) which all share similar geometric nonlinearity and thus similar nonlinear stiffness/damping properties, flexible in design and easy to implement. This talk systematically reviews the research background & motivation, essential bio-inspired ideas, advantages of this novel method, beneficial nonlinear properties in stiffness, damping and inertia, and potential applications, and ends with some remarks and conclusions.

Biography:

Xingjian Jing (M’13, SM’17) received the B.S. degree from Zhejiang University, China, the M.S. degree and PhD degree in Robotics from Shenyang Institute of Automation, Chinese Academy of Sciences, respectively. He also achieved the PhD degree in nonlinear systems and signal processing from University of Sheffield, U.K..

He is now a Professor with the Department of Mechanical Engineering, City University of Hong Kong. Before joining in CityU, he was a Research Fellow with the Institute of Sound and Vibration Research, University of Southampton, followed by assistant professor and associate professor with Hong Kong Polytechnic University. His current research interests include: Nonlinear dynamics, Vibration, Control and Robotics, with a series of 200+ publications of 9300+ citations and H-index 50 (in Google Scholar), with a number of patents filed in China and US. He is one of the top 2% highly cited world scientists and a senior IEEE member.

Prof Jing is the recipient of a number of academic and professional awards including 2016 IEEE SMC Andrew P. Sage Best Transactions Paper Award, 2017 TechConnect World Innovation Award in US, 2017 EASD Senior Research Prize in Europe, 2017 the First Prize of HK Construction Industry Council Innovation Award, and 2019 HKIE outstand paper award etc.

He currently serves Associate Editors of Mechanical Systems and Signal Processing, IEEE Transactions on Industrial Electronics, & IEEE Transactions on Systems, Man, Cybernetics -Systems, and served as Technical Editor of IEEE/ASME Trans. on Mechatronics during 2015-2020. He was the lead editor of a special issue on “Exploring nonlinear benefits in engineering” published in Mechanical Systems and Signal Processing during 2017-2018 and is the lead editor of the other special issue on “Next-generation vibration control exploiting nonlinearities” published in MSSP during 2021-2022.

Time:16: 00 -18:00, June 8th, 2023.Place: A817, Aeronautic Building, Northwestern Polytechnical University

Host: Prof. Shengxi Zhou, Assoc. Prof. Tao Yang

Youth Teacher Development Center of School of Aeronautics


Address: No.127, Youyi West Road, Beilin District, Xi 'an City, Shaanxi Province

Zip code: 710072

Contact: Office A319, Aviation Building, Northwestern Polytechnical University

Tel: 029-88493671, 88460479 Fax: 029-88493671

All rights reserved School of Aeronautics of Northwestern Polytechnical University | http://hangkong.nwpu.edu.cn

You are the visitor

Empty yard micro field of view