首页 | 学院概况 | 师资队伍 | 本科生教育 | 研究生教育 | 科学研究 | 交流合作 | 党建工作 | 学生天地 | 工会视窗 | 校友之声 | 院务公开 
首页
 学院动态 
 学术交流 
 教育教学 
 学生工作 
首页>>学术交流>>正文
航空学院青年学术论坛第174讲—代尔夫特理工大学 Richard P. Dwight教授
2019-11-22 16:38   审核人:

 

 

人:代尔夫特理工大学 Richard P. Dwight教授

人:韩忠华教授

    间:20191125

    点:友谊校区航空楼A817(星期一)上午9:30-11:00

    目:The anti-fairing: Drag reduction at junctions

    要:Interference drag from junctions represents about 5-10% of the total cruise drag of modern commercial air-transport, primarily originating from the wing-fuselage, tail-fuselage, and nacelle-pylon-wing junctions. Starting from a blank-slate, we applied adjoint shape-optimization procedures within a RANS model, to design a fairing for reducing drag in this class of flows. The result was an "anti-fairing", a shallow depression in the fuselage that appeared to reduce the interference drag by about ~10-40%. This talk will recount the history over the past 4 years of our experimental, numerical (including LES) and theoretical investigations of this highly surprising result, and our attempts to confirm it, establish its magnitude and a working mechanism, and finally apply it to real applications.

报告人简介:

Richard P. Dwight教授,2006年获得英国曼切斯特大学博士学位; 2009年起任职于代尔夫特理工大学航空航天工程学院空气动力学系副教授;2017年起任职于荷兰数学与计算机科学中心(CWI)客座教授。Richard P. Dwight教授在计算流体力学、机器学习、气动优化设计、代理优化方法、伴随方程方法、不确定优化方法等领域均有建树。

 

 

飞行器复杂流动与控制引智基地全英文课程—Prof. Richard P. Dwight: Uncertainty Quantification and Inverse problems

应航空学院飞行器复杂流动与控制学科创新引智基地韩忠华教授邀请代尔夫特理工大学Richard P. Dwight教授将于1127日在我校针对Uncertainty Quantification and Inverse problems进行课程培训,热情欢迎感兴趣的老师和同学们报名参加!

联系人:柳斐

 话:18729537605

 信:ltwbtf

 

授课专家:代尔夫特理工大学Richard P. Dwight教授

邀请人:航空学院流体力学系 韩忠华教授

  间:20191127 9:00-12:00 14:30-17:30

  点:友谊校区航空楼A817

课程题目:Uncertainty Quantification and Inverse problems

        课程简介:

This course is a short introduction to the field of uncertainty quantification, with emphasis on techniques for model calibration and large-scale inverse problems with the Bayesian framework.  Lectures are complemented by 3 tutorial exercises in Python, which exploit the theory learned.  Prerequisites are: (1) a first-course on probability/statistics (though this material will be briefly refreshed in the first lecture), (2) experience with Python (and numpy) programming would be very beneficial for the tutorials.  If 1) is missing I recommend reading Chapter 4 of the textbook Ralph C. Smith "Uncertainty Quantification" in advance of the course.

       授课专家简介:

Richard P. Dwight教授,2006年获得英国曼切斯特大学博士学位; 2009年起任职于代尔夫特理工大学航空航天工程学院空气动力学系副教授;2017年起任职于荷兰数学与计算机科学中心(CWI)客座教授。Richard P. Dwight教授在计算流体力学、机器学习、气动优化设计、代理优化方法、伴随方程方法、不确定优化方法等领域均有建树。

                       

            Uncertainty Quantification and Inverse problems课程安排

        

课程安排

      1127

      9:00-10:00

课程1: Introduction to   UQ and its relevance in aerospace

    10:30-12:00

课程2: Bayesian   approaches to regression problems

    14:30-17:30

课程3: Large-scale stochastic inverse problems with high-dimensional   randomness (and random fields)

 

 

关闭窗口
版权所有?西北工业大学航空学院 | http://hangkong.nwpu.edu.cn