首页 | 学院概况 | 师资队伍 | 本科生教育 | 研究生教育 | 科学研究 | 交流合作 | 党建工作 | 学生天地 | 工会视窗 | 校友之声 | 院务公开 
交流合作
 国内交流合作 
 国际交流合作 
 青年学术论坛 
首页>>交流合作>>国际交流合作>>正文
西班牙马德里理工大学航空学院Esterban Ferrer博士等学术报告通知
2017-07-08 11:14   审核人:

飞行器复杂流动与控制学科创新引智基地邀请,西班牙马德里理工大学航空学院Esterban Ferrer博士来我院作系列学术报告并授课,欢迎我院师生参加听课、聆听报告。

报告人:Esterban Ferrer 博士、Soledad Le Clainche Martinez博士

主持人:韩忠华 教授

 

授课讲座时间安排

    

   

  

报告人

7119:00-11:00

航空楼A310

Seminar I:间断伽辽金法在流体动力学中的应用

Discontinuous Galerkin methods for fluid dynamics

Dr. Ferrer

7129:00-10:00

航空楼A310

Seminar II:流动线性稳定性分析、敏度分析与控制

Linear instability analysis, sensitivity and flow control

Dr. Ferrer

71210:20-11:20

航空楼A310

Seminar III:流动结构及高阶DMD方法

Flow structures and high order dynamicmode decomposition

Dr. Martinez

7178:30-12:30

航空楼A310

Lecture I线性代数:基础知识及高级概念

Linear Algebra, some fundamental and advanced concepts

Dr. Ferrer

7198:30-12:30

航空楼A310

Lecture II高性能计算的并行策略

Parallelization strategies for high performance computing

Dr. Ferrer

7218:30-12:30

航空楼A310

Lecture III流体动力学中的高阶数值方法

High order numerical methods in fluid dynamics

Dr. Ferrer

 

Seminar I :间断伽辽金法在流体动力学中的应用

Discontinuous Galerkin methods for fluid dynamics

摘要:近年来,越来越多学者采用高阶(三阶及以上)间断伽辽金法(DG Methods)来计算N-S方程更为精确的数值解。DG方法的特点在于其较小的数值误差(如色散误差和扩散误差)以及能够使用网格加密(增加网格节点数,或者说h-refinement)、提高插值多项式阶数(p-refinement)两种方式来提高计算精度的能力。DG方法是连续谱方法的拓展,但它并不要求边界上数值解必须是连续,允许存在间断。本次讲座将展示DG方法在可压及不可压流动中的应用,包括钝头体和细长体的层流、湍流绕流以及高阶滑移网格上风力机绕流数值模拟。此外,还将展示一种适用于DG方法的各向异性p型自适应策略。

Abstract During recent years, discontinuous Galerkin (DG) high order methods (order ≥ 3) have gained popularity to compute accurate solutions of the Navier- Stokes equations. The DG technique is characterised by low numerical errors (i.e. dispersion and diffusion) and its ability to perform mesh refinement (increased number of mesh nodes or h-refinement) and/or polynomial enrichment (p-refinement) to achieve accurate solutions. DG methods are an extension of continuous spectral methods where the continuity constraint required on edge boundaries is relaxed, allowing for discontinuities in the numerical solution.In this talk, we present applications of discontinuous Galerkin techniques for compressible and incompressible flows. Examples include laminar and turbulent flows over bluff and slender geometries and rotating wind turbines modelled using high order sliding meshes. Additionally, local anisotropic p-adaption strategies for DG methods are presented

 

Seminar II:流动线性稳定性分析、敏度分析与控制

Linear instability analysis, sensitivity and flow control

摘要:利用线性稳定性理论(LST)研究在稳定流动结构中小扰动是如何增长或衰减的。将此方法应用于N-S方程,可以导出线性方程系统。该方程的解能显示流场中的小扰动在增长或是衰减。本讲座将展示如何利用高阶(如DG方法)求解器来实施线性稳定性分析及敏度分析。敏度分析是建立在线性稳定性分析的基础上,它能够找到流场中最为敏感的区域,可以利用此信息来降低流动的不稳定性从而使流动在高雷诺数情况下依然保持稳定状态。。

AbstractLinear stability techniques study how small perturbations grow or decay with respect to a steady configuration (i.e. flow at equilibrium or base flow). This decomposition is fed into the underlying physical models; i.e. the Navier-Stokes equations, giving rise to a system of linear equations whose solutions provide information about the growth or decay of the perturbation in the flow.  In this talk, we use high order solvers (e.g. discontinuous Galerkin) to perform linear instability analysis and sensitivity analysis. Sensitivity analysis builds upon linear instability to provide information of the most sensitive flow regions and may be used to damp growing instabilities such that flows remain steady at high Reynolds numbers.

 

Ferrer博士简介

Esterban Ferrer2012年于英国牛津大学获工程科学专业博士学位,现于西班牙马德里理工大学航空学院从事研究及教学工作。Ferrer博士曾于2003-2004在英国“Mobius Dynamic”CFD工程师;于2004-2008在西班牙“CENER”可再生能源中心任高级空气动力学研究员。Ferrer博士的主要研究方向包括:流动稳定性分析,高阶CFD方法,CFD工业工程应用等,发表JCP等高水平期刊论文二十余篇。Ferrer博士目前担任COMPUTERS & FLUIDSInternational Journal for Numerical Methods in Engineering等期刊的审稿人。

Dr. Esteban Ferrer received his PhD from Department of Engineering Science, University of Oxford in 2012, is currently researching and teaching at Universidad Politécnica de Madrid. Between 2003-2004, he worked as a CFD Engineer at Mobius Dynamic Company. In 2004, he took the Senior Aerodynamicist position in ‘CENER’ Renewable Energy Centre, Spain. His research interests include linear stability theory (LST), high order CFD methods and CFD industrial application. He is author of over 20 journal papers and currently a reviewer of COMPUTERS &FLUIDS ,International Journal for Numerical Methods in Engineering.

 

Martinez 博士简介

Soledad Le Clainche Martinez2013年于西班牙马德里理工大学航空学院应用数学系获博士学位,现于西班牙马德里理工大学航空学院从事研究及教学工作。Martinez博士曾获包括冯卡门流体动力学研究所荣誉硕士在内的三个硕士学位。她的主要研究方向包括:流动稳定性分析,流动结构,降阶模型等。

Dr. Soledad Le Clainche Martinezreceived his PhD from UPM in 2013, is currently researching and teaching at UPM. She has been awarded 3 Master's Degrees including a Master with Honoursfrom von Karman  Institute. Her research interests include numerical methods for stability analysis, identification of flow structures and Reduced Order Models.

关闭窗口
版权所有©西北工业大学航空学院 | http://hangkong.nwpu.edu.cn